SPARSITY-BASED MULTI-TARGET DIRECT POSITIONING ALGORITHM BASED ON JOINT-SPARSE RECOVERY
نویسندگان
چکیده
منابع مشابه
SAR target recognition based on improved joint sparse representation
In this paper, a SAR target recognition method is proposed based on the improved joint sparse representation (IJSR) model. The IJSR model can effectively combine multiple-view SAR images from the same physical target to improve the recognition performance. The classification process contains two stages. Convex relaxation is used to obtain support sample candidates with the l1-norm minimization ...
متن کاملBlock sparsity-based joint compressed sensing recovery of multi-channel ECG signals
In recent years, compressed sensing (CS) has emerged as an effective alternative to conventional wavelet based data compression techniques. This is due to its simple and energy-efficient data reduction procedure, which makes it suitable for resource-constrained wireless body area network (WBAN)-enabled electrocardiogram (ECG) telemonitoring applications. Both spatial and temporal correlations e...
متن کاملRobust Patch-Based Multi-Atlas Labeling by Joint Sparsity Regularization
Automated labeling of anatomical structures on MR brain images is widely investigated in many neuroscience and clinic studies to quantitatively measure either individual or group structural/functional difference. To address the issue of registration errors that affect multi-atlas based labeling, patch-based label fusion methods have been recently proposed by inspecting the similarity of each pa...
متن کاملSparsity-based multi-height phase recovery in holographic microscopy
High-resolution imaging of densely connected samples such as pathology slides using digital in-line holographic microscopy requires the acquisition of several holograms, e.g., at >6-8 different sample-to-sensor distances, to achieve robust phase recovery and coherent imaging of specimen. Reducing the number of these holographic measurements would normally result in reconstruction artifacts and ...
متن کاملDirect Sparsity Optimization Based Feature Selection for Multi-Class Classification
A novel sparsity optimization method is proposed to select features for multi-class classification problems by directly optimizing a l2,p -norm ( 0 < p ≤ 1 ) based sparsity function subject to data-fitting inequality constraints to obtain large between-class margins. The direct sparse optimization method circumvents the empirical tuning of regularization parameters in existing feature selection...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress In Electromagnetics Research C
سال: 2012
ISSN: 1937-8718
DOI: 10.2528/pierc11110704